If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+6x=16
We move all terms to the left:
5x^2+6x-(16)=0
a = 5; b = 6; c = -16;
Δ = b2-4ac
Δ = 62-4·5·(-16)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{89}}{2*5}=\frac{-6-2\sqrt{89}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{89}}{2*5}=\frac{-6+2\sqrt{89}}{10} $
| 40+40x=0+1 | | 9x^2=2+11x | | 12+4n=4+12 | | -7x-3=284 | | 6d-11=7 | | -6r-7=83 | | 180=25+x+x | | -6r-7=63 | | -5x^2+10=-8x | | (y-2)-(y+2)=3y | | 5-5=5-5x | | X/64x^2-9=0 | | -8d-5=-293 | | (4x-15)+(3x-25)=180 | | 4x-15+3x-25=180 | | 2n=4n-7 | | y=4,y=−3 | | x2-1/2x=0 | | 9x^2-4x+12=0 | | 8/9=n-4/2 | | x2-1/2x+0=0 | | 2x+5+4x-13=180 | | 60=1.2l+27.8 | | 4/x-1+4=24/×-1 | | 20=k/5–-16 | | 1.3p=-15.6 | | 3a=4/5 | | -30=6+-4h | | x2+5x+0=0 | | 1=p/10-1=1 | | 7t+5/4=t+2 | | 4-4/(x-4)^2=0 |